论文标题
拓扑有序波形中固有符号的非热效果
Non-Hermitian effects of the intrinsic signs in topologically ordered wavefunctions
论文作者
论文摘要
多体波函数中的负迹象在量子力学中起重要作用。二维六边形晶格上双半模型的地面波函数包含一个固有的符号,任何局部变换都无法消除。在这里,我们提出了张量网络表示中的通用双半函数,并将波函数标准映射到具有假想的磁场和想象中的三旋三角脸相互作用的三角形晶格Ashkin-Teller模型的分区函数。为了用平均时间(PT)对称性求解这种非热模型,采用数值张量 - 网络方法,并确定全局相图。与双半阶段相邻,我们发现了一个通过非单身共形场理论描述的无间隙密度循环阶段,以及具有分区函数的零的PT对称性断裂阶段。因此,在拓扑有序波函数中的固有符号与PT-对称非对称的非统计模型之间建立了连接。
Negative signs in many-body wavefunctions play an important role in quantum mechanics. The ground-state wavefunction of double semion model on a two-dimensional hexagonal lattice contains an intrinsic sign which cannot be removed by any local transformation. Here we proposed a generic double semion wavefunction in tensor network representation, and the wavefunction norm is mapped to the partition function of a triangular lattice Ashkin-Teller model with imaginary magnetic fields and imaginary three-spin triangular face interactions. To solve this non-Hermitian model with parity-time (PT) symmetry, numerical tensor-network methods are employed, and a global phase diagram is determined. Adjacent to the double semion phase, we find a gapless dense loop phase described by non-unitary conformal field theory and a PT-symmetry breaking phase with zeros of the partition function. So a connection has established between the intrinsic signs in the topologically ordered wavefunction and the PT-symmetric non-Hermitian statistical model.