论文标题

关于Teissier的猜想:原木规范阈值的情况

On a conjecture of Teissier: the case of log canonical thresholds

论文作者

Elduque, Eva, Mustata, Mircea

论文摘要

对于$ x $中的代数品种$(x,0)$(x,0)$(x,0)$(f = 0)$的平滑细菌,其孤立的奇异性为$ 0 $,Teissier猜想在$ f \ vert_h $ $ $ $ $ $ thy ybariant $ thy ybariant $ thy y的arnold arnold arnold eartement of $ f $ a的arnold指数中均下限。通过在叶lo徒引起的方法上构建,我们证明了对数规范阈值的猜想。

For a smooth germ of algebraic variety $(X,0)$ and a hypersurface $(f=0)$ in $X$, with an isolated singularity at $0$, Teissier conjectured a lower bound for the Arnold exponent of $f$ in terms of the Arnold exponent of a hyperplane section $f\vert_H$ and the invariant $θ_0(f)$ of the hypersurface. By building on an approach due to Loeser, we prove the conjecture in the case of log canonical thresholds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源