论文标题

COVID-19增长的远程相关性

Long-range correlations in Covid-19 growth

论文作者

Turaeva, Nigora, Aripova, Nigina, Oksengendler, Boris L.

论文摘要

分形统计数据适用于美国每天的Covid-19案例。 HURST参数表明增长的远程相关性是根据基于美国几个州每日增长的波动来计算的。使用两个控制参数,在家中居住和人口密度分析了不同状态的HURST参数的值。

The fractal statistics were applied to the daily new cases of COVID-19 in the USA. The Hurst parameter, which indicates the long-range correlations in the growth, was calculated using a simple R/S method based on the fluctuations of the daily growth for several US states. The values of Hurst parameters for different states were analyzed using two controlling parameters, stay-at-home order, and the population density.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源