论文标题
半经典系统中的桥接纠缠动态和混乱
Bridging entanglement dynamics and chaos in semiclassical systems
论文作者
论文摘要
人们广泛认识到,通过破坏过程,纠缠产生和动力混乱在半经典模型中密切相关。在这项工作中,我们提出了一个统一的框架,该框架将两分和多部分纠缠的生长与经典和量子混乱的量词联系起来。在半经典方案中,von Neumann纠缠熵的动力学,旋转挤压,量子渔民信息和超时正方形换向器受到附近的相位轨迹通过局部Lyapunov Spectrum的差异的控制,正如先前的猜测所暗示的。通用的分析预测通过两个范式模型的详细数值计算证实,这些模型与原子和光学实验有关,这些模型表现出常规性转换过渡:量子踢的顶部和Dicke模型。
It is widely recognized that entanglement generation and dynamical chaos are intimately related in semiclassical models via the process of decoherence. In this work, we propose a unifying framework which directly connects the bipartite and multipartite entanglement growth to the quantifiers of classical and quantum chaos. In the semiclassical regime, the dynamics of the von Neumann entanglement entropy, the spin squeezing, the quantum Fisher information and the out-of-time-order square commutator are governed by the divergence of nearby phase-space trajectories via the local Lyapunov spectrum, as suggested by previous conjectures in the literature. General analytical predictions are confirmed by detailed numerical calculations for two paradigmatic models, relevant in atomic and optical experiments, which exhibit a regular-to-chaotic transition: the quantum kicked top and the Dicke model.