论文标题

多保真传感器选择:贪婪的算法,放置廉价且昂贵的传感器的成本限制

Multi-fidelity sensor selection: Greedy algorithms to place cheap and expensive sensors with cost constraints

论文作者

Clark, Emily, Brunton, Steven L., Kutz, J. Nathan

论文摘要

我们开发了贪婪的算法,以近似对多保真传感器选择问题的最佳解决方案,这是一个成本约束的优化问题,规定了廉价(低信噪比)的位置和数量,并且在环境或状态空间中的廉价(低信噪)和昂贵的(高信噪比)传感器。具体而言,我们评估了廉价且昂贵的传感器的组成以及其放置,以实现高维状态的准确重建。我们使用柱状QR分解来获得初步传感器位置。每种类型的传感器中有多少个高度取决于传感器噪声水平,传感器成本,总成本预算以及所测量数据的单数值谱。这种细微差别使我们能够根据参数空间的渐近区域的计算结果提供传感器选择建议。我们还对使用一种类型的传感器时的模式和传感器数量对重建误差的影响进行系统探索。我们对多保真传感器组成作为数据特征的函数的广泛探索是为最佳多效率传感器选择提供指南的首次。

We develop greedy algorithms to approximate the optimal solution to the multi-fidelity sensor selection problem, which is a cost constrained optimization problem prescribing the placement and number of cheap (low signal-to-noise) and expensive (high signal-to-noise) sensors in an environment or state space. Specifically, we evaluate the composition of cheap and expensive sensors, along with their placement, required to achieve accurate reconstruction of a high-dimensional state. We use the column-pivoted QR decomposition to obtain preliminary sensor positions. How many of each type of sensor to use is highly dependent upon the sensor noise levels, sensor costs, overall cost budget, and the singular value spectrum of the data measured. Such nuances allow us to provide sensor selection recommendations based on computational results for asymptotic regions of parameter space. We also present a systematic exploration of the effects of the number of modes and sensors on reconstruction error when using one type of sensor. Our extensive exploration of multi-fidelity sensor composition as a function of data characteristics is the first of its kind to provide guidelines towards optimal multi-fidelity sensor selection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源