论文标题
双重估计的双重估计
Off-diagonal estimates for bi-commutators
论文作者
论文摘要
我们研究了bi-commutators $ [t_1,[b,t_2]] $ pointsisce乘法和calderón-zygmund操作员,并将其$ l^{p_1} l^{p_1} l^{p_2} \ to l^{q_1} l^{q_1} l^{q_2} $ boundedness供几种comments undents组成,以供几个forneftiment umectime off diaiagonal nound nist $(p_1,p_2)\ neq(q_1,q_2)$。该策略基于最近近似弱分解方法的双参数版本。
We study the bi-commutators $[T_1, [b, T_2]]$ of pointwise multiplication and Calderón-Zygmund operators, and characterize their $L^{p_1}L^{p_2} \to L^{q_1}L^{q_2}$ boundedness for several off-diagonal regimes of the mixed-norm integrability exponents $(p_1,p_2)\neq(q_1,q_2)$. The strategy is based on a bi-parameter version of the recent approximate weak factorization method.