论文标题

希格斯的解剖结构衰减成$γγ$和$r_ξ$仪表中的eChl中的$γz$

Anatomy of Higgs decays into $γγ$ and $γZ$ within the EChL in the $R_ξ$ gauges

论文作者

Herrero, Maria, Morales, Roberto A.

论文摘要

在这项工作中,我们研究了希格斯玻色子在两个光子和一个光子和一个$ z $仪表玻色子中衰减,在非线性有效场理论的背景下,称为electroweak手性拉格朗日。我们介绍了对相应的振幅到协变量$r_ξ$仪表的详细计算。我们假设费米子循环的贡献与标准模型一样,在此关注的是玻色循环贡献的计算。我们的重新归一化计划和参与$R_ξ$仪表的各种贡献的解剖结构得到了充分探讨。通过本计算,我们证明了ECHL结果的规格不变性,不仅是针对壳中的Higgs Boson的情况,而且还出于最一般且有趣的外壳Higgs Boson的情况。我们最终分析并结论了戈德斯通玻色循环的特殊相关性,与手性拉格朗日人的预期手性循环行为吻合。我们与$r_ξ$计中标准模型的相应计算进行系统比较,并与先前的ECHL导致单位量规。这项工作代表了这些希格斯在最通用的$r_ξ$测量值中可观察到一环的第一个计算,并且具有完整的重生程序描述,尚未在先前的文献中进行完全探索,并且与线性有效领域理论(SMEFT)中最常用的文献不同。

In this work we study the Higgs boson decays into two photons and into one photon and one $Z$ gauge boson within the context of the non-linear Effective Field Theory called the Electroweak Chiral Lagrangian. We present a detailed computation of the corresponding amplitudes to one-loop level in the covariant $R_ξ$ gauges. We assume that the fermionic loop contributions are as in the Standard Model and focus here just in the computation of the bosonic loop contributions. Our renormalization program and the anatomy of the various contributions participating in the $R_ξ$ gauges are fully explored. With this present computation we demonstrate the gauge invariance of the EChL result, not only for the case of on-shell Higgs boson, but also for the most general and interesting case of off-shell Higgs boson. We finally analyse and conclude on the special relevance of the Goldstone boson loops, in good agreement with the expected chiral loops behaviour in Chiral Lagrangians. We perform a systematic comparison with the corresponding computation of the Standard Model in the $R_ξ$ gauges and with the previous EChL results in the unitary gauge. This work represents the first computation within the EChL of these Higgs observables to one-loop in the most general $R_ξ$ gauges and with a full renormalization program description, not yet fully explored in the previous literature and which is different to the most frequently used in the linear Effective Field Theory (SMEFT).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源