论文标题

无限序列的预测和算法统计

Predictions and algorithmic statistics for infinite sequence

论文作者

Milovanov, Alexey

论文摘要

考虑以下预测问题。假设有一个块框,可以根据二进制树上的一些未知的计算分布产生位。我们知道第一个$ n $ bits $ x_1 x_2 \ ldots x_n $。我们想知道下一块等于$ 1 $的事件的概率。 Solomonoff建议将通用半含量M $用于解决此任务。他证明,对于每一个可计算的分布$ p $,对于\ {0,1 \} $的每一个$ b \ the以下内容:$$ \ sum_ {n = 1}^{\ sum_ {x:x:l(x)方面:Hutter和Muchnik证明,有一个通用的半点$ M $,可计算的分布$ P $和一个随机(在Martin -l {Ö} F Sense)序列$ x_1 x_1 x_2 \ ldots $,使得$ \ lim_ {n \ to \ fo \ to \ fo \ fo \ in \ infty} x_1 \ ldots x_n)\ nrightArrow 0 $。我们建议一种新的预测方式。对于每个有限的字符串$ x $,我们根据$ x $的最佳(某些宽度)分配预测新的位。我们证明了类似的结果,即我们的预测方式的所罗门诺夫定理。我们还表明,我们的预测方法没有那种负面方面作为所罗门诺夫的方法。

Consider the following prediction problem. Assume that there is a block box that produces bits according to some unknown computable distribution on the binary tree. We know first $n$ bits $x_1 x_2 \ldots x_n$. We want to know the probability of the event that that the next bit is equal to $1$. Solomonoff suggested to use universal semimeasure $m$ for solving this task. He proved that for every computable distribution $P$ and for every $b \in \{0,1\}$ the following holds: $$\sum_{n=1}^{\infty}\sum_{x: l(x)=n} P(x) (P(b | x) - m(b | x))^2 < \infty\ .$$ However, Solomonoff's method has a negative aspect: Hutter and Muchnik proved that there are an universal semimeasure $m$, computable distribution $P$ and a random (in Martin-L{ö}f sense) sequence $x_1 x_2\ldots$ such that $\lim_{n \to \infty} P(x_{n+1} | x_1\ldots x_n) - m(x_{n+1} | x_1\ldots x_n) \nrightarrow 0$. We suggest a new way for prediction. For every finite string $x$ we predict the new bit according to the best (in some sence) distribution for $x$. We prove the similar result as Solomonoff theorem for our way of prediction. Also we show that our method of prediction has no that negative aspect as Solomonoff's method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源