论文标题
对神经网络加速的现代FPGA中电压运算降低的实验研究
An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration
论文作者
论文摘要
我们从经验上评估了一种不足的技术,即强调低于标称水平的电路电源电压,以提高卷积神经网络(CNN)加速器的功率效率,该加速器已映射到现场可编程门阵列(FPGAS)。低于安全电压水平以下的低调可能会导致正时故障,因为电路延迟过多。我们评估了此类加速器的可靠性权力权衡。具体而言,我们在实验上研究了真实FPGA的多个组件的减少电压操作,表征了CNN加速器的相应可靠性行为,提出了最小化降低电压操作的缺点的技术,并与架构CNN优化技术(即量化和量化)相结合,即量化和量化。我们研究了环境温度对此类加速器可靠性功率权衡的影响。我们对具有五个最先进的图像分类CNN基准的现代Xilinx ZCU102 FPGA平台的三个相同样品进行实验。这种方法使我们能够研究未成年技术对软件和硬件可变性的影响。我们通过低调实现了超过3倍的发电效率(GOPS/W)。该增益的2.6倍是消除电压防护带区域的结果,即FPGA供应商设定的标称电平的安全电压区域,以确保在最差的环境和电路条件下正确的功能。 43%的发电效率增益是由于后卫带来的进一步低估,这是以CNN加速器准确损失为代价的。我们评估了一种有效的频率下降技术,该技术可以防止这种准确性损失,并发现其将功率效率的增益从43%降低到25%。
We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.