论文标题
本地自适应解释回归
A Locally Adaptive Interpretable Regression
论文作者
论文摘要
具有良好可预测性和高解释性的机器学习模型对于决策支持系统至关重要。线性回归是最容易解释的预测模型之一。但是,简单的线性回归中的线性性使其可预测性恶化。在这项工作中,我们介绍了本地自适应解释回归(LOAIAR)。在Loair中,通过神经网络参数参数的元模型预测了高斯分布的回归系数的百分位数,以快速适应。我们对公共基准数据集的实验结果表明,我们的模型不仅比其他最先进的基准相比实现了可比或更好的预测性能,而且还发现了输入和目标变量之间的一些有趣的关系,例如CO2排放和国民产品(GNP)之间的抛物线关系(GNP)。因此,LOAIR是通过提高线性回归的预测能力而无需贬值其可解释性的预测能力来弥合计量经济学,统计和机器学习之间差距的一步。
Machine learning models with both good predictability and high interpretability are crucial for decision support systems. Linear regression is one of the most interpretable prediction models. However, the linearity in a simple linear regression worsens its predictability. In this work, we introduce a locally adaptive interpretable regression (LoAIR). In LoAIR, a metamodel parameterized by neural networks predicts percentile of a Gaussian distribution for the regression coefficients for a rapid adaptation. Our experimental results on public benchmark datasets show that our model not only achieves comparable or better predictive performance than the other state-of-the-art baselines but also discovers some interesting relationships between input and target variables such as a parabolic relationship between CO2 emissions and Gross National Product (GNP). Therefore, LoAIR is a step towards bridging the gap between econometrics, statistics, and machine learning by improving the predictive ability of linear regression without depreciating its interpretability.