论文标题

知识增强了神经时尚趋势预测

Knowledge Enhanced Neural Fashion Trend Forecasting

论文作者

Ma, Yunshan, Ding, Yujuan, Yang, Xun, Liao, Lizi, Wong, Wai Keung, Chua, Tat-Seng

论文摘要

对于学术界和行业来说,时尚趋势预测是一项至关重要的任务。尽管一些努力致力于解决这项具有挑战性的任务,但他们只研究了有限的时尚元素,这些元素具有高度时令或简单的模式,这几乎无法揭示出真正的时尚趋势。为了实现洞察力的时尚趋势预测,这项工作着重于研究特定用户群体的细粒度时尚元素趋势。我们首先使用Instagram收集的大规模时尚趋势数据集(FIT),并提取了时间序列的时尚元素记录和用户信息。进一步了解,为了有效地模拟了具有相当复杂模式的时尚元素的时间序列数据,我们提出了一种知识增强的销售网络模型(KERN),该模型(KERN)利用了深层复发性神经网络在建模时间序列数据中的能力。此外,它利用时尚域中的内部和外部知识影响了时尚元素趋势的时间序列模式。这种域知识的结合进一步增强了深度学习模型,以捕获特定时尚要素的模式并预测未来趋势。广泛的实验表明,提出的KERN模型可以有效地捕获客观时尚元素的复杂模式,从而对时尚趋势进行预测。

Fashion trend forecasting is a crucial task for both academia and industry. Although some efforts have been devoted to tackling this challenging task, they only studied limited fashion elements with highly seasonal or simple patterns, which could hardly reveal the real fashion trends. Towards insightful fashion trend forecasting, this work focuses on investigating fine-grained fashion element trends for specific user groups. We first contribute a large-scale fashion trend dataset (FIT) collected from Instagram with extracted time series fashion element records and user information. Further-more, to effectively model the time series data of fashion elements with rather complex patterns, we propose a Knowledge EnhancedRecurrent Network model (KERN) which takes advantage of the capability of deep recurrent neural networks in modeling time-series data. Moreover, it leverages internal and external knowledge in fashion domain that affects the time-series patterns of fashion element trends. Such incorporation of domain knowledge further enhances the deep learning model in capturing the patterns of specific fashion elements and predicting the future trends. Extensive experiments demonstrate that the proposed KERN model can effectively capture the complicated patterns of objective fashion elements, therefore making preferable fashion trend forecast.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源