论文标题
卡尔:可控剂,具有四足球的增强型学习
CARL: Controllable Agent with Reinforcement Learning for Quadruped Locomotion
论文作者
论文摘要
动态环境中的运动合成一直是角色动画的长期问题。使用运动捕获数据的方法由于其较大的捕获和标记要求,在复杂的环境中的扩展趋势较差。基于物理的控制器在这方面是有效的,尽管可控的不太可控。在本文中,我们提出了Carl,这是一种四足动物,可以通过高级指令来控制,并对动态环境自然反应。从可以模仿各个动画剪辑的代理开始,我们使用生成的对抗网络将高级控件(例如速度和标题)调整到与原始动画相对应的动作分布中。通过深度加固学习进一步进行微调,使代理可以从看不见的外部扰动中恢复,同时产生平稳的过渡。然后,通过在整个过程中添加导航模块在动态环境中创建自主代理变得直接。我们通过衡量代理遵循用户控制的能力并对生成的运动以显示其有效性的视觉分析来评估我们的方法。
Motion synthesis in a dynamic environment has been a long-standing problem for character animation. Methods using motion capture data tend to scale poorly in complex environments because of their larger capturing and labeling requirement. Physics-based controllers are effective in this regard, albeit less controllable. In this paper, we present CARL, a quadruped agent that can be controlled with high-level directives and react naturally to dynamic environments. Starting with an agent that can imitate individual animation clips, we use Generative Adversarial Networks to adapt high-level controls, such as speed and heading, to action distributions that correspond to the original animations. Further fine-tuning through the deep reinforcement learning enables the agent to recover from unseen external perturbations while producing smooth transitions. It then becomes straightforward to create autonomous agents in dynamic environments by adding navigation modules over the entire process. We evaluate our approach by measuring the agent's ability to follow user control and provide a visual analysis of the generated motion to show its effectiveness.