论文标题
通过复合神经网络使用多保真数据融合对动态响应变化的有效表征
Efficient Characterization of Dynamic Response Variation Using Multi-Fidelity Data Fusion through Composite Neural Network
论文作者
论文摘要
结构中的不确定性是不可避免的,这通常会导致动态响应预测的变化。对于复杂的结构,野性蒙特卡洛模拟用于响应变化分析是不可行的,因为一项单次运行可能已经是计算成本高昂的。因此,已经探索了数据驱动的元模型方法,以促进有效的仿真和统计推断。元模型的性能取决于培训数据集的质量和数量。然而,在实际实践中,从高维有限元仿真或实验中获得的高保真数据通常很少,这对元模型建立构成了重大挑战。在这项研究中,我们利用了结构动态分析中的多级响应预测机会,即,从减少阶的建模中迅速获取大量的低保真数据,并准确地从全尺度有限元分析中获取了少量的高效率数据。具体而言,我们制定了一种复合神经网络融合方法,该方法可以充分利用获得的多层次,异质数据集。它隐含地标识了低保真数据集的相关性,与最先进的图案相比,该数据集的准确性提高了。使用频率响应变化表征作为示例的综合研究以证明性能。
Uncertainties in a structure is inevitable, which generally lead to variation in dynamic response predictions. For a complex structure, brute force Monte Carlo simulation for response variation analysis is infeasible since one single run may already be computationally costly. Data driven meta-modeling approaches have thus been explored to facilitate efficient emulation and statistical inference. The performance of a meta-model hinges upon both the quality and quantity of training dataset. In actual practice, however, high-fidelity data acquired from high-dimensional finite element simulation or experiment are generally scarce, which poses significant challenge to meta-model establishment. In this research, we take advantage of the multi-level response prediction opportunity in structural dynamic analysis, i.e., acquiring rapidly a large amount of low-fidelity data from reduced-order modeling, and acquiring accurately a small amount of high-fidelity data from full-scale finite element analysis. Specifically, we formulate a composite neural network fusion approach that can fully utilize the multi-level, heterogeneous datasets obtained. It implicitly identifies the correlation of the low- and high-fidelity datasets, which yields improved accuracy when compared with the state-of-the-art. Comprehensive investigations using frequency response variation characterization as case example are carried out to demonstrate the performance.