论文标题
通过学习的潜在行动共享的自主权
Shared Autonomy with Learned Latent Actions
论文作者
论文摘要
辅助机器人使残疾人能够自己执行日常任务。但是,这些任务可能很复杂,其中包含粗糙的运动和细粒度的操纵。例如,在进食时,不仅需要移至正确的食物,而且还必须精确地以不同的方式操纵食物(例如,切割,刺,刺,sc)。共享的自治方法通过使用机器人控件仲裁用户输入来使机器人远程操作更安全,更精确。但是,这些作品主要集中在从离散集中实现目标的高级任务,同时在很大程度上忽略了对对象的操纵。同时,详细性降低了远程流动图的有用的高维机器人动作成直观的低维控制器,但是目前尚不清楚这些方法是否可以实现诸如饮食之类的任务的必要精度。我们的见解是,通过将来自学识渊博的潜在行动的直观嵌入与共享自主权的机器人援助相结合 - 我们可以实现精确的辅助操作。在这项工作中,我们通过提出一种新的模型结构来采用与共享自主权的潜在行动,该结构根据机器人对目标的信心改变了人类输入的含义。我们在机器人到最可能的目标的距离上显示了融合界限,并制定了一个培训程序,以学习一个控制器,即使在存在共同的自主权的情况下,该控制器也能够在目标之间移动。我们在模拟和饮食用户研究中评估我们的方法。在此处查看我们的实验视频:https://youtu.be/7boukojzvyk
Assistive robots enable people with disabilities to conduct everyday tasks on their own. However, these tasks can be complex, containing both coarse reaching motions and fine-grained manipulation. For example, when eating, not only does one need to move to the correct food item, but they must also precisely manipulate the food in different ways (e.g., cutting, stabbing, scooping). Shared autonomy methods make robot teleoperation safer and more precise by arbitrating user inputs with robot controls. However, these works have focused mainly on the high-level task of reaching a goal from a discrete set, while largely ignoring manipulation of objects at that goal. Meanwhile, dimensionality reduction techniques for teleoperation map useful high-dimensional robot actions into an intuitive low-dimensional controller, but it is unclear if these methods can achieve the requisite precision for tasks like eating. Our insight is that---by combining intuitive embeddings from learned latent actions with robotic assistance from shared autonomy---we can enable precise assistive manipulation. In this work, we adopt learned latent actions for shared autonomy by proposing a new model structure that changes the meaning of the human's input based on the robot's confidence of the goal. We show convergence bounds on the robot's distance to the most likely goal, and develop a training procedure to learn a controller that is able to move between goals even in the presence of shared autonomy. We evaluate our method in simulations and an eating user study. See videos of our experiments here: https://youtu.be/7BouKojzVyk