论文标题
kähler歧管和复杂空间形式的非相关性
Non-relativity of Kähler manifold and complex space forms
论文作者
论文摘要
我们研究了两种实际分析的Kähler歧管和三种类型的复杂空间形式的非租赁性。第一个是Kähler歧管,其局部Kähler电位的极化是局部坐标中的NASH函数。第二个是Hartogs域,该结构域与两个规范指标相等,其kähler电位的极化是舒张功能。
We study the non-relativity for two real analytic Kähler manifolds and complex space forms of three types. The first one is a Kähler manifold whose polarization of local Kähler potential is a Nash function in a local coordinate. The second one is the Hartogs domain equpped with two canonical metrics whose polarizations of the Kähler potentials are the diastatic functions.