论文标题

I型和准型-II核心/壳量子点的螺旋钻重组寿命缩放

Auger Recombination Lifetime Scaling for Type-I and Quasi-Type-II Core/Shell Quantum Dots

论文作者

Philbin, John P., Rabani, Eran

论文摘要

胶体核心/壳量子点已经达到了接近不合同的量子收率,具有发光二极管,激光和电荷分离应用具有有希望的特性。已知壳和核心材料的壳厚度和带状对齐会影响这些设备的效率。在许多这样的应用中,提高效率的关键需要对多人状态有深入的了解。本文中,我们阐明了准型型-II CDSE/CDS和类型I CDSE/ZNS CORE/shell量子点的Biexciton螺旋螺旋体重组寿命的壳厚度和带对齐的依赖性。我们发现,Biexciton螺旋螺旋体重组寿命随着准型II CDSE/CDS/CDS CORE/SHELL量子点的总纳米晶体体积而增加,并且与I型CDSE/ZNS CORE/SHELL量子点的壳厚度无关。为了执行这些计算并计算螺旋钻的重组寿命,我们根据身份的随机分辨率开发了一种低规模的方法。数值方法提供了一个框架,以研究Biexciton螺旋螺旋体重组寿命的缩放,这是基于激子半径的壳厚度依赖性,库仑耦合的壳厚度依赖性,以及Quasi-type-type-type-type-type-type-ii cdse/cdse/cdse/cdse/cdse/cdse/ccdse/type-i type-i cdse/zns coce/zns shell shell shell量子量子的最终状态密度。

Having already achieved near-unity quantum yields, with promising properties for light-emitting diode, lasing, and charge separation applications, colloidal core/shell quantum dots have great technological potential. The shell thickness and band alignment of the shell and core materials are known to influence the efficiency of these devices. In many such applications, a key to improving the efficiency requires a deep understanding of multiexcitonic states. Herein, we elucidate the shell thickness and band alignment dependencies of the biexciton Auger recombination lifetime for quasi-type-II CdSe/CdS and type-I CdSe/ZnS core/shell quantum dots. We find that the biexciton Auger recombination lifetime increases with the total nanocrystal volume for quasi-type-II CdSe/CdS core/shell quantum dots and is independent of the shell thickness for type-I CdSe/ZnS core/shell quantum dots. In order to perform these calculations and compute Auger recombination lifetimes, we developed a low-scaling approach based on the stochastic resolution of identity. The numerical approach provided a framework to study the scaling of the biexciton Auger recombination lifetimes in terms of the shell thickness dependencies of the exciton radii, Coulomb couplings, and density of final states in quasi-type-II CdSe/CdS and type-I CdSe/ZnS core/shell quantum dots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源