论文标题

DENOISEG:联合Denoising and Segmentation

DenoiSeg: Joint Denoising and Segmentation

论文作者

Buchholz, Tim-Oliver, Prakash, Mangal, Krull, Alexander, Jug, Florian

论文摘要

显微镜图像分析通常需要对象进行分割,但是该任务的训练数据通常很少且难以获得。在这里,我们提出了DeNoiseg,这是一种新方法,只能在几个带注释的地面真理细分中端到端训练。我们通过扩展噪声2Void来实现这一目标,这是一种可以单独在嘈杂图像上训练的自我监督的denoisising方案,还可以预测密集的3级分割。我们方法成功的原因是,细分可以从denoing中获利,尤其是在同一网络中共同执行时。通过查看所有可用的原始数据,该网络成为一名剥夺专家,同时可以共同学习进行细分,即使只有少数细分标签可用。我们观察到,当添加适量的合成噪声时,获得了高质量(非常低噪声)原始数据的最佳分割结果,从而促进了这一假设。这会产生denoising任务的非平凡,并释放了所需的共学习效果。我们认为,DeNoiseg提供了一种可行的方式来规避对高质量训练数据的巨大饥饿,并有效地学习了密集的细分。

Microscopy image analysis often requires the segmentation of objects, but training data for this task is typically scarce and hard to obtain. Here we propose DenoiSeg, a new method that can be trained end-to-end on only a few annotated ground truth segmentations. We achieve this by extending Noise2Void, a self-supervised denoising scheme that can be trained on noisy images alone, to also predict dense 3-class segmentations. The reason for the success of our method is that segmentation can profit from denoising, especially when performed jointly within the same network. The network becomes a denoising expert by seeing all available raw data, while co-learning to segment, even if only a few segmentation labels are available. This hypothesis is additionally fueled by our observation that the best segmentation results on high quality (very low noise) raw data are obtained when moderate amounts of synthetic noise are added. This renders the denoising-task non-trivial and unleashes the desired co-learning effect. We believe that DenoiSeg offers a viable way to circumvent the tremendous hunger for high quality training data and effectively enables few-shot learning of dense segmentations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源