论文标题

Trippy:一个三重副本策略,用于价值独立的神经对话态跟踪

TripPy: A Triple Copy Strategy for Value Independent Neural Dialog State Tracking

论文作者

Heck, Michael, van Niekerk, Carel, Lubis, Nurul, Geishauser, Christian, Lin, Hsien-Chin, Moresi, Marco, Gašić, Milica

论文摘要

面向任务的对话框系统依靠对话框状态跟踪(DST)在交互过程中监视用户的目标。多域和开放式摄影剂设置使任务变得非常复杂,并且需求可扩展的解决方案。在本文中,我们提出了一种新的DST方法,该方法利用各种复制机制用值填充插槽。我们的模型无需维护候选值列表。相反,所有值都是从对话框上下文中提取的。插槽由三种复制机制之一填充:(1)跨度预测可以直接从用户输入中提取值; (2)可以从系统中复制一个值,以跟踪系统的信息操作; (3)可以从已经包含在对话框状态中的不同插槽中复制一个值,以解决域内和跨域内的核心发行。我们的方法将基于跨度的插槽填充方法与内存方法的优势结合在一起,以避免使用值选择列表。我们认为,我们的策略简化了DST任务,同时在包括Multiwoz 2.1在内的各种流行评估集上实现了最先进的表现,我们在55%以上实现了共同目标准确性。

Task-oriented dialog systems rely on dialog state tracking (DST) to monitor the user's goal during the course of an interaction. Multi-domain and open-vocabulary settings complicate the task considerably and demand scalable solutions. In this paper we present a new approach to DST which makes use of various copy mechanisms to fill slots with values. Our model has no need to maintain a list of candidate values. Instead, all values are extracted from the dialog context on-the-fly. A slot is filled by one of three copy mechanisms: (1) Span prediction may extract values directly from the user input; (2) a value may be copied from a system inform memory that keeps track of the system's inform operations; (3) a value may be copied over from a different slot that is already contained in the dialog state to resolve coreferences within and across domains. Our approach combines the advantages of span-based slot filling methods with memory methods to avoid the use of value picklists altogether. We argue that our strategy simplifies the DST task while at the same time achieving state of the art performance on various popular evaluation sets including Multiwoz 2.1, where we achieve a joint goal accuracy beyond 55%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源