论文标题
关于洛伦兹类型的离散伪血液吸引子
On discrete pseudohyperbolic attractors of Lorenz type
论文作者
论文摘要
我们研究所谓离散的洛伦兹样吸引子的几何和动力学特性,可以在三维的差异性中观察到。我们提出了它们出现在此类地图的一个参数家族中的新现象学场景。我们特别关注这样的情况,这可能会导致类似洛伦兹的周期般的吸引者。这些吸引子具有非常有趣的动力学特性,我们表明他们的危机可能导致新型类型的伪血液分离洛伦兹形状吸引子的出现。我们还显示了所有这些吸引子在三维广义的Hénon地图中的例子。
We study geometrical and dynamical properties of the so-called discrete Lorenz-like attractors, that can be observed in three-dimensional diffeomorphisms. We propose new phenomenological scenarios of their appearance in one parameter families of such maps. We pay especially our attention to such a scenario that can lead to period-2 Lorenz-like attractors. These attractors have very interesting dynamical properties and we show that their crises can lead, in turn, to the emergence of pseudohyperbolic discrete Lorenz shape attractors of new types. We also show examples of all these attractors in three-dimensional generalized Hénon maps.