论文标题
某些非平凡的封闭Z不变子空间是否具有分区属性?
Do some nontrivial closed z-invariant subspaces have the division property ?
论文作者
论文摘要
我们考虑在开放单元圆盘上的功能holomorthic的BANACH空间E,使单方面的转移和向后移动t t在E上有界限。 $λ$ $ \ in $ d和$ n中的每一个f $ \ in $ n,使得f($λ$)= 0。这个问题与单位圆圈中Banach超功能的Banach Space的非平凡双 - 易变子空间有关。
We consider Banach spaces E of functions holomorphic on the open unit disc D such that the unilateral shift S and the backward shift T are bounded on E. Assuming that the spectra of S and T are equal to the closed unit disc we discuss the existence of closed z-invariant of N of E having the "division property", which means that the function f $λ$ : z $\rightarrow$ f (z)/ z--$λ$ belongs to N for every $λ$ $\in$ D and for every f $\in$ N such that f ($λ$) = 0. This question is related to the existence of nontrivial bi-invariant subspaces of Banach spaces of hyperfunctions on the unit circle T.