论文标题
配置:可控的神经面部图像生成
CONFIG: Controllable Neural Face Image Generation
论文作者
论文摘要
近年来,我们对实际的自然图像,尤其是面孔进行采样的能力已经取得了飞跃,但是我们对生成过程进行微调控制的能力却落后了。如果这项新技术是为了找到实际用途,我们需要实现对生成网络的控制水平,这些网络在不牺牲现实主义的情况下与计算机图形和角色动画中所看到的那样。为此,我们提出了Confignet,这是一种神经面部模型,允许以语义上有意义的方式控制输出图像的各个方面,这是通往可控制神经渲染的道路的重要一步。精孔在真实的面部图像以及合成面呈渲染中受到训练。我们的新方法使用合成数据将潜在空间分配到与传统渲染管道输入相对应的元素中,分开了诸如头姿势,面部表情,发型,发光,照明以及许多其他方面,这些方面在真实数据中很难注释。没有标签的网络呈现给网络的真实图像扩展了生成的图像的多样性并鼓励现实主义。最后,我们提出了使用属性检测网络与用户研究结合的评估标准,并证明了最新的对输出图像中属性的控制。
Our ability to sample realistic natural images, particularly faces, has advanced by leaps and bounds in recent years, yet our ability to exert fine-tuned control over the generative process has lagged behind. If this new technology is to find practical uses, we need to achieve a level of control over generative networks which, without sacrificing realism, is on par with that seen in computer graphics and character animation. To this end we propose ConfigNet, a neural face model that allows for controlling individual aspects of output images in semantically meaningful ways and that is a significant step on the path towards finely-controllable neural rendering. ConfigNet is trained on real face images as well as synthetic face renders. Our novel method uses synthetic data to factorize the latent space into elements that correspond to the inputs of a traditional rendering pipeline, separating aspects such as head pose, facial expression, hair style, illumination, and many others which are very hard to annotate in real data. The real images, which are presented to the network without labels, extend the variety of the generated images and encourage realism. Finally, we propose an evaluation criterion using an attribute detection network combined with a user study and demonstrate state-of-the-art individual control over attributes in the output images.