论文标题

关于偏心连通性指数和图形偏心距离之和之间的差异

On the difference between the eccentric connectivity index and eccentric distance sum of graphs

论文作者

Alizadeh, Yaser, Klavžar, Sandi

论文摘要

图$ g $的偏心连接索引为$ξ^c(g)= \ sum_ {v \ in v(g)} \ varepsilon(v)°(v)$(v)$,而偏心距离为$ξ^d(g)= \ sum__ = \ sum_ { $ \ varepsilon(v)$是$ v $的偏心,$ d(v)$ $ v $和其他顶点之间的距离之和。 $ξ^d(g) - ξ^c(g)$上的下部和上限为任意图$ g $。直径最多$ 2 $的常规图形和与完整图的鸡尾酒会图相结合的图表,分别达到了两个平等。 $ξ^d(t) - ξ^c(t)$上的尖锐下限和上限为任意树。还给出了$ξ^d(g)+ξ^c(g)$的尖锐下限,并给出了$ g $的$ g $,并且证明了带有给定半径的图形$ g $在$ξ^d(g)上的尖锐下限。

The eccentric connectivity index of a graph $G$ is $ξ^c(G) = \sum_{v \in V(G)}\varepsilon(v)°(v)$, and the eccentric distance sum is $ξ^d(G) = \sum_{v \in V(G)}\varepsilon(v)D(v)$, where $\varepsilon(v)$ is the eccentricity of $v$, and $D(v)$ the sum of distances between $v$ and the other vertices. A lower and an upper bound on $ξ^d(G) - ξ^c(G)$ is given for an arbitrary graph $G$. Regular graphs with diameter at most $2$ and joins of cocktail-party graphs with complete graphs form the graphs that attain the two equalities, respectively. Sharp lower and upper bounds on $ξ^d(T) - ξ^c(T)$ are given for arbitrary trees. Sharp lower and upper bounds on $ξ^d(G)+ξ^c(G)$ for arbitrary graphs $G$ are also given, and a sharp lower bound on $ξ^d(G)$ for graphs $G$ with a given radius is proved.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源