论文标题

渐进关系网络:基于少数脑电图学习的直观上肢运动的想象力

Gradual Relation Network: Decoding Intuitive Upper Extremity Movement Imaginations Based on Few-Shot EEG Learning

论文作者

Shim, Kyung-Hwan, Jeong, Ji-Hoon, Lee, Seong-Whan

论文摘要

大脑计算机接口(BCI)是连接用户和外部设备的通信工具。在实时BCI环境中,对于每个用户和每个会话,尤其是必要的校准过程。该过程会花费大量时间阻碍在现实世界中的BCI系统的应用。为了避免这个问题,我们采用了基于公制的几杆学习方法来解码直观的高超级运动想象力(MI),使用渐进的关系网络(GRN)可以逐渐考虑时间和频谱组的组合。我们从25名受试者获得了上臂,前臂和手动相关的上臂,前臂和手部的MI数据。在离线分析下的大平均多类分类结果分别为42.57%,55.60%和80.85%,分别为1-,5和25次设置。此外,我们可以在实时机器人手臂控制场景中使用几种射击方法来证明直观MI解码的可行性。五名参与者可以在饮酒任务中获得78%的成功率。因此,我们通过专注于人体部位,以及根据建议的GRN来显示各种未经训练的直觉MI解码,并通过缩短校准时间来证明在线机器人手臂控制的可行性。

Brain-computer interface (BCI) is a communication tool that connects users and external devices. In a real-time BCI environment, a calibration procedure is particularly necessary for each user and each session. This procedure consumes a significant amount of time that hinders the application of a BCI system in a real-world scenario. To avoid this problem, we adopt the metric based few-shot learning approach for decoding intuitive upper-extremity movement imagination (MI) using a gradual relation network (GRN) that can gradually consider the combination of temporal and spectral groups. We acquired the MI data of the upper-arm, forearm, and hand associated with intuitive upper-extremity movement from 25 subjects. The grand average multiclass classification results under offline analysis were 42.57%, 55.60%, and 80.85% in 1-, 5-, and 25-shot settings, respectively. In addition, we could demonstrate the feasibility of intuitive MI decoding using the few-shot approach in real-time robotic arm control scenarios. Five participants could achieve a success rate of 78% in the drinking task. Hence, we demonstrated the feasibility of the online robotic arm control with shortened calibration time by focusing on human body parts but also the accommodation of various untrained intuitive MI decoding based on the proposed GRN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源