论文标题

来自健康ADL的无监督的预训练模型改善了帕金森氏病的步态模式分类

Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns

论文作者

Som, Anirudh, Krishnamurthi, Narayanan, Buman, Matthew, Turaga, Pavan

论文摘要

在不同的医疗保健应用中,将深度学习算法的应用和使用以稳定的速度引起了兴趣。但是,这种算法的使用可能会具有挑战性,因为它们需要大量培训数据来捕获不同的变化。这使得很难在临床环境中使用它们,因为在大多数健康应用中,研究人员通常必须使用有限的数据。更少的数据会导致深度学习模型过度拟合。在本文中,我们询问如何使用来自不同环境的数据,不同的用例,并且数据分布不同。我们通过使用来自健康受试者进行日常生活活动的单传感器加速度计数据来体现这种用例,以提取与帕金森氏病分类的多传感器加速度计步态数据(目标数据集)相关的功能。我们使用源数据集训练预训练的模型,并将其用作功能提取器。我们表明,提取的目标数据集提取的功能可用于训练有效的分类模型。我们的预训练源模型由卷积自动编码器组成,目标分类模型是一个简单的多层感知模型。我们探索了使用不同活动组训练的两个不同的预训练源模型,并分析了预训练模型对帕金森氏病分类任务的影响。

Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源