论文标题

关于集团和比克利克分区的两个猜想

Regarding two conjectures on clique and biclique partitions

论文作者

Rohatgi, Dhruv, Urschel, John C., Wellens, Jake

论文摘要

对于图$ g $,让$ cp(g)$表示覆盖$ g $的边缘所需的最低列数量。同样,令$ bp_k(g)$表示覆盖$ g $ agy $ k $ k $ times的每个边缘所需的最小双晶(即完整的两部分子图)。我们考虑两种猜想 - 一个关于$ CP(g) + CP(\ edimelline {g})$的最大可能值(由于de Caen,Erdős,Pullman和Wormald),另一个关于$ BP_K(K_N)$(由于De Caen,Gregory和Pritikin)。我们反驳了第一个,在$ \ max_g cp(g) + cp(\ overline {g})$上获得了改进的上限和上限,我们证明了第二个的渐近版本,表明$ bp_k(k_n)=(1 + o(1 + o(1 + o(1))n $。

For a graph $G$, let $cp(G)$ denote the minimum number of cliques of $G$ needed to cover the edges of $G$ exactly once. Similarly, let $bp_k(G)$ denote the minimum number of bicliques (i.e. complete bipartite subgraphs of $G$) needed to cover each edge of $G$ exactly $k$ times. We consider two conjectures -- one regarding the maximum possible value of $cp(G) + cp(\overline{G})$ (due to de Caen, Erdős, Pullman and Wormald) and the other regarding $bp_k(K_n)$ (due to de Caen, Gregory and Pritikin). We disprove the first, obtaining improved lower and upper bounds on $\max_G cp(G) + cp(\overline{G})$, and we prove an asymptotic version of the second, showing that $bp_k(K_n) = (1+o(1))n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源