论文标题
在列表上,随机刺破代码的可恢复性
On the list recoverability of randomly punctured codes
论文作者
论文摘要
我们表明,距离距离距离的代码的随机穿刺是可以在约翰逊绑定范围之外恢复的列表。特别是,这意味着有一些芦苇固体代码在约翰逊界外之外可恢复的列表。以前知道,有一些没有此属性的芦苇固体代码。作为我们主要定理的直接推论,我们在来自芦苇 - 固体代码的不平衡扩展器上获得了更好的学位界限。
We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.