论文标题
许多访问TSP重新审视
Many visits TSP revisited
论文作者
论文摘要
我们研究了许多访问TSP问题,其中$ n $ Cities和Pairwise(可能是不对称)整数距离都给出了数字$ k(v)$,人们必须找到一个最佳旅行,访问每个城市$ v $ v $ $ k(v)$ times。目前最快的算法归因于Berger,Kozma,Mnich和Vincze [Soda 2019,Talg 2020],并在时空运行$ \ Mathcal {O}^*(5^n)$。他们还显示了随时间运行的多项式空间算法$ \ mathcal {o}^*(16^{n+o(n)})$。 在这项工作中,我们显示了三个主要结果:(i)随机的随机多项式空间算法$ \ MATHCAL {O}^*(2^nd)$,其中$ d $是两个城市之间的最大距离。通过使用标准方法,这将导致$(1+ε)$ - 近似时间$ \ MATHCAL {O}^*(2^nε^{ - 1})$。在这些结果中提高常数$ 2 $将是一个重大突破,因为这将改善$ \ Mathcal {O}^*(2^n)$ - 定向汉密尔顿周期的时间算法,这是一个50年的开放问题。 (ii)对Berger等人的指数空间算法的严格分析,导致$ \ MATHCAL {O}^*(4^n)$运行时间绑定。 (iii)一种新的多项式空间算法,在时间上运行$ \ mathcal {o}(7.88^n)$。
We study the Many Visits TSP problem, where given a number $k(v)$ for each of $n$ cities and pairwise (possibly asymmetric) integer distances, one has to find an optimal tour that visits each city $v$ exactly $k(v)$ times. The currently fastest algorithm is due to Berger, Kozma, Mnich and Vincze [SODA 2019, TALG 2020] and runs in time and space $\mathcal{O}^*(5^n)$. They also show a polynomial space algorithm running in time $\mathcal{O}^*(16^{n+o(n)})$. In this work, we show three main results: (i) A randomized polynomial space algorithm in time $\mathcal{O}^*(2^nD)$, where $D$ is the maximum distance between two cities. By using standard methods, this results in $(1+ε)$-approximation in time $\mathcal{O}^*(2^nε^{-1})$. Improving the constant $2$ in these results would be a major breakthrough, as it would result in improving the $\mathcal{O}^*(2^n)$-time algorithm for Directed Hamiltonian Cycle, which is a 50 years old open problem. (ii) A tight analysis of Berger et al.'s exponential space algorithm, resulting in $\mathcal{O}^*(4^n)$ running time bound. (iii) A new polynomial space algorithm, running in time $\mathcal{O}(7.88^n)$.