论文标题

PolyMorf:通过物理层深度学习多态无线接收器

PolymoRF: Polymorphic Wireless Receivers Through Physical-Layer Deep Learning

论文作者

Restuccia, Francesco, Melodia, Tommaso

论文摘要

当今的无线技术主要基于僵化的设计,这使它们效率低下且容易受到各种无线攻击。为了解决此关键问题,无线接收器需要(i)发射器当前使用的物理层参数;如果需要,(ii)更改其硬件和软件结构以解码传入的波形。在本文中,我们介绍了PolyMorf,这是一种基于深度学习的多态性接收器,能够根据推断的波形参数实时重新配置自身。我们的关键技术创新是(i)一种新颖的深度学习架构,称为RFNET,它可以解决关键波形推理问题的解决方案; (ii)将RFNET与无线电组件和信号处理集成的广义硬件/软件体系结构。我们在自定义软件定义的无线电平台上原型Polymorf进行了原型polymorf,并通过广泛的空中实验显示(i)RFNET的精度与最先进的精度相似,但具有52X和8X延迟和硬件的降低; (ii)Polymorf在完美知识的甲骨文系统的87%之内实现了吞吐量,因此首次证明了多态接收器是可行且有效的。

Today's wireless technologies are largely based on inflexible designs, which makes them inefficient and prone to a variety of wireless attacks. To address this key issue, wireless receivers will need to (i) infer on-the-fly the physical-layer parameters currently used by transmitters; and if needed, (ii) change their hardware and software structures to demodulate the incoming waveform. In this paper, we introduce PolymoRF, a deep learning-based polymorphic receiver able to reconfigure itself in real time based on the inferred waveform parameters. Our key technical innovations are (i) a novel embedded deep learning architecture, called RFNet, which enables the solution of key waveform inference problems; (ii) a generalized hardware/software architecture that integrates RFNet with radio components and signal processing. We prototype PolymoRF on a custom software-defined radio platform, and show through extensive over-the-air experiments that (i) RFNet achieves similar accuracy to that of state-of-the-art yet with 52x and 8x latency and hardware reduction; (ii) PolymoRF achieves throughput within 87% of a perfect-knowledge Oracle system, thus demonstrating for the first time that polymorphic receivers are feasible and effective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源