论文标题
通过从失败中学习学习计划
Learning programs by learning from failures
论文作者
论文摘要
我们描述了一种归纳逻辑编程(ILP)方法,称为从失败中学习。在这种方法中,ILP系统(学习者)将学习问题分解为三个单独的阶段:生成,测试和约束。在生成阶段,学习者生成一个满足一组假设约束的假设(逻辑程序)(对假设的句法形式的约束)。在测试阶段,学习者对训练例子进行了测试。假设不需要所有积极的例子或需要一个负面示例,就会失败。如果假设失败,则在约束阶段,学习者从失败的假设中学习约束,以修剪假设空间,即限制随后的假设产生。例如,如果假设过于笼统(需要一个负面的例子),则限制了该假设的修剪概括。如果假设过于具体(不需要所有积极的例子),则限制了假设的修剪专业化。该循环重复,直到(i)学习者发现一个假设需要所有正面和没有负的例子,或者(ii)没有更多的假设可以检验。我们介绍了Popper,这是一种ILP系统,通过结合答案集编程和序言来实现这种方法。 Popper支持无限的问题域,有关列表和数字的推理,学习文本最小的程序以及学习递归程序。我们对三个领域(玩具游戏问题,机器人策略和列表转换)的实验结果表明,(i)限制大大提高了学习绩效,并且(ii)Popper在预测精度和学习时间方面都可以胜过现有的ILP系统。
We describe an inductive logic programming (ILP) approach called learning from failures. In this approach, an ILP system (the learner) decomposes the learning problem into three separate stages: generate, test, and constrain. In the generate stage, the learner generates a hypothesis (a logic program) that satisfies a set of hypothesis constraints (constraints on the syntactic form of hypotheses). In the test stage, the learner tests the hypothesis against training examples. A hypothesis fails when it does not entail all the positive examples or entails a negative example. If a hypothesis fails, then, in the constrain stage, the learner learns constraints from the failed hypothesis to prune the hypothesis space, i.e. to constrain subsequent hypothesis generation. For instance, if a hypothesis is too general (entails a negative example), the constraints prune generalisations of the hypothesis. If a hypothesis is too specific (does not entail all the positive examples), the constraints prune specialisations of the hypothesis. This loop repeats until either (i) the learner finds a hypothesis that entails all the positive and none of the negative examples, or (ii) there are no more hypotheses to test. We introduce Popper, an ILP system that implements this approach by combining answer set programming and Prolog. Popper supports infinite problem domains, reasoning about lists and numbers, learning textually minimal programs, and learning recursive programs. Our experimental results on three domains (toy game problems, robot strategies, and list transformations) show that (i) constraints drastically improve learning performance, and (ii) Popper can outperform existing ILP systems, both in terms of predictive accuracies and learning times.