论文标题

均匀的集合,集团分离器,关键图和最佳$χ$结合功能

Homogeneous sets, clique-separators, critical graphs, and optimal $χ$-binding functions

论文作者

Brause, Christoph, Geißer, Maximilian, Schiermeyer, Ingo

论文摘要

给定图表的集合$ \ MATHCAL {H} $,令$ f_ \ Mathcal {h}^\ star \ star \ colon \ colon \ mathbb {n} _ {> 0} \ to \ m athbb {n} _ {> 0} $是最佳的$ -bindy $ umath $ quarts $ - $ f_ \ Mathcal {h}^\ star(ω)= \ max \ {χ(g):g \ text {is} \ Mathcal {h} \ Mathcal {h} \ text {-free,}ω(g)=ω\} =ω\}。 $ p_5 $ - free Graphs和$(C_5,C_7,\ ldots)$的子类别的$χ$ - 结合功能 - 免费图形。特别是,我们证明了每个$ω\ geq 1 $: (i)$ \ f _ {\ {p_5,banner \}}^\ star(ω)= f_ {3k_1}^\ star(ω)\ inθ(ω^2/\ log(ω)),$ (ii)$ \ f _ {\ {p_5,co-banner \}}}^\ star(ω)= f^\ star _ {\ {2k_2 \}}}}(ω)\ in \ mathcal {o}(O}(O}(O})(ω^2),$ (iii)$ \ f _ {\ {c_5,c_7,\ ldots,banner \}}}^\ star(ω)= f^\ star _ {\ {c_5,3k_1 \}} (iv)$ \ f _ {\ {p_5,c_4 \}}}^\ star(ω)= \ lceil(5Ω-1)/4 \ rceil.qun 我们还对每个考虑的图形类都表征了所有图形$ g $,均为$χ(g)>χ(g-u)$ in V(g)$中的每个$ u \。从这些结构性结果来看,我们可以证明Reed的猜想 - 与$(P_5,Banner)$ - 免费图形相关的图形数,集团数和最高图。

Given a set $\mathcal{H}$ of graphs, let $f_\mathcal{H}^\star\colon \mathbb{N}_{>0}\to \mathbb{N}_{>0}$ be the optimal $χ$-binding function of the class of $\mathcal{H}$-free graphs, that is, $$f_\mathcal{H}^\star(ω)=\max\{χ(G): G\text{ is } \mathcal{H}\text{-free, } ω(G)=ω\}.$$ In this paper, we combine the two decomposition methods by homogeneous sets and clique-separators in order to determine optimal $χ$-binding functions for subclasses of $P_5$-free graphs and of $(C_5,C_7,\ldots)$-free graphs. In particular, we prove the following for each $ω\geq 1$: (i) $\ f_{\{P_5,banner\}}^\star(ω)=f_{3K_1}^\star(ω)\in Θ(ω^2/\log(ω)),$ (ii) $\ f_{\{P_5,co-banner\}}^\star(ω)=f^\star_{\{2K_2\}}(ω)\in\mathcal{O}(ω^2),$ (iii) $\ f_{\{C_5,C_7,\ldots,banner\}}^\star(ω)=f^\star_{\{C_5,3K_1\}}(ω)\notin \mathcal{O}(ω),$ and (iv) $\ f_{\{P_5,C_4\}}^\star(ω)=\lceil(5ω-1)/4\rceil.$ We also characterise, for each of our considered graph classes, all graphs $G$ with $χ(G)>χ(G-u)$ for each $u\in V(G)$. From these structural results, we can prove Reed's conjecture -- relating chromatic number, clique number, and maximum degree of a graph -- for $(P_5,banner)$-free graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源