论文标题
路径和周期幂的最低度
Minimum degrees for powers of paths and cycles
论文作者
论文摘要
我们研究图$ g $包含$ k $ th的路径和任意指定长度的周期的最低度条件。假设$ g $的订单很大,我们确定确切的阈值。这扩展了Allen,Böttcher和Hladký[J.伦敦。数学。 Soc。 (2)84(2)(2011),269--302]关于遏制任意指定长度的循环的路径和平方的正方形,并在肯定中解决了他们的猜想。
We study minimum degree conditions under which a graph $G$ contains $k$th powers of paths and cycles of arbitrary specified lengths. We determine precise thresholds, assuming that the order of $G$ is large. This extends a result of Allen, Böttcher and Hladký [J. Lond. Math. Soc. (2) 84(2) (2011), 269--302] concerning the containment of squares of paths and squares of cycles of arbitrary specified lengths and settles a conjecture of theirs in the affirmative.