论文标题
通过受控曲率研究中镜环中电子性质,磁化和持续电流的研究
Study of electronic properties, Magnetization and persistent currents in a mesoscopic ring by controlled curvature
论文作者
论文摘要
我们研究了在存在外部磁场的情况下局限于圆锥体的二维局部表面的非相互作用的无旋转电子气体的模型。局部区域的特征是环形径向电势。我们编写schrödinger方程,并使用薄层量化程序来计算波形和能量谱。在这样的过程中,它产生了几何诱导的电位,这取决于平均值和高斯曲率。然而,由于我们考虑了具有介观尺寸的环,因此高斯曲率对能量光谱的影响可以忽略不计。分析磁化和持续电流。在前者中,我们观察到Aharonov-Bohm(AB)和De Haas-Van Alphen(DHVA)型振荡。在后者中,仅观察到AB型振荡。在这两种情况下,曲率都会增加振荡的幅度。
We study the model of a noninteracting spinless electron gas confined to the two-dimensional localized surface of a cone in the presence of external magnetic fields. The localized region is characterized by an annular radial potential. We write the Schrödinger equation and use the thin-layer quantization procedure to calculate the wavefunctions and the energy spectrum. In such a procedure, it arises a geometry induced potential, which depends on both the mean and the Gaussian curvatures. Nevertheless, since we consider a ring with a mesoscopic size, the effects of the Gaussian curvature on the energy spectrum are negligible. The magnetization and the persistent current are analyzed. In the former, we observed the Aharonov-Bohm (AB) and de Haas-van Alphen (dHvA) types oscillations. In the latter, it is observed only the AB type oscillations. In both cases, the curvature increases the amplitude of the oscillations.