论文标题

在曲线上赢得了差异很差的积分

Winning property of badly approximable points on curves

论文作者

Beresnevich, Victor, Nesharim, Erez, Yang, Lei

论文摘要

在本文中,我们证明,在$ \ mathbb {r}^n $中的任何分析性非脱位曲线上都非常近似的点是绝对的获胜集。这证实了Badziahin和Velani(2014)所说的地区的一个关键猜想,这是Davenport问题从1960年代开始的深远概括。我们主要结果的各种后果之一是解决Bugeaud在实际数字上的问题的解决方案,而代数数量的任意程度非常近似。证明依赖于分形几何学和均匀动力学的新想法。

In this paper we prove that badly approximable points on any analytic non-degenerate curve in $\mathbb{R}^n$ is an absolute winning set. This confirms a key conjecture in the area stated by Badziahin and Velani (2014) which represents a far-reaching generalisation of Davenport's problem from the 1960s. Amongst various consequences of our main result is a solution to Bugeaud's problem on real numbers badly approximable by algebraic numbers of arbitrary degree. The proof relies on new ideas from fractal geometry and homogeneous dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源