论文标题

通过循环树双重性的渐近扩展

Asymptotic expansions through the loop-tree duality

论文作者

Plenter, Judith, Rodrigo, Germán

论文摘要

提出了一种通用方法,用于循环树双重性(LTD)形式主义中Feynman振幅的渐近扩张。渐近膨胀发生在环路三弹药的欧几里得空间中,内部和外部尺度之间的层次结构明确定义。此外,单个对渐近扩张的紫外线行为仅在扩展的第一项中出现,并且在四个时空维度上在本地重新归一化。这两个属性代表了比区域扩展方法(EBR)的优势。我们探索不同运动限制的不同方法,并通过几个基准示例得出了一般指南。

First results towards a general method for asymptotic expansions of Feynman amplitudes in the loop-tree duality (LTD) formalism are presented. The asymptotic expansion takes place at integrand-level in the Euclidean space of the loop three-momentum, where the hierarchies among internal and external scales are well-defined. Additionally, the UV behaviour of the individual contributions to the asymptotic expansion emerges only in the first terms of the expansion and is renormalized locally in four space-time dimensions. These two properties represent an advantage over the method of Expansion by Regions (EbR). We explore different approaches in different kinematical limits, and derive general guidelines with several benchmark examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源