论文标题

利用大型传播统计数据来解读测量轨迹的随机特性

Leveraging large-deviation statistics to decipher the stochastic properties of measured trajectories

论文作者

Thapa, Samudrajit, Wyłomańska, Agnieszka, Sikora, Grzegorz, Wagner, Caroline E., Krapf, Diego, Kantz, Holger, Chechkin, Aleksei V., Metzler, Ralf

论文摘要

编码颗粒(例如病毒,囊泡或单个蛋白质)位置的大量时间序列在单粒子跟踪实验或超级计算研究中常规获得。它们包含有关病毒传播或药物如何在生物细胞中输送的重要线索。在金融市场和气候数据中,正在记录类似的时间序列。此类时间序列最常根据时间平均值的于点位移进行评估,这些位移仍然是有限测量时间的随机变量。对于不同的物理随机过程,它们的统计特性不同,因此使我们能够在随机过程本身中提取有价值的信息。为了利用在测得的时间序列中编码的统计信息的全部潜力,我们在这里提出了一种易于实施和计算廉价的新方法,这是基于时间平均均值位移与其集合平均值对应物的偏差的偏差。具体来说,我们将这些偏差的上限用于布朗运动,以检查这种方法对模拟和真实数据集的适用性。通过比较不同数据集的偏差概率,我们演示了布朗运动的理论结合如何揭示有关观察到的随机过程的其他信息。我们将大传输方法应用于在水溶液中跟踪的示踪珠,粘蛋白水凝胶中测量的示踪珠和地理表面温度异常的数据集。我们的分析表明,如何有效地将大型传播特性用作简单但有效的常规检验,以拒绝有关统计特性(例如ergodicity breaking and ofergodicity breaking and Sptim Sime Realsions)的Brownian运动假设和关键信息。

Extensive time-series encoding the position of particles such as viruses, vesicles, or individual proteins are routinely garnered in single-particle tracking experiments or supercomputing studies. They contain vital clues on how viruses spread or drugs may be delivered in biological cells. Similar time-series are being recorded of stock values in financial markets and of climate data. Such time-series are most typically evaluated in terms of time-average mean-squared displacements, which remain random variables for finite measurement times. Their statistical properties are different for different physical stochastic processes, thus allowing us to extract valuable information on the stochastic process itself. To exploit the full potential of the statistical information encoded in measured time-series we here propose an easy-to-implement and computationally inexpensive new methodology, based on deviations of the time-averaged mean-squared displacement from its ensemble average counterpart. Specifically, we use the upper bound of these deviations for Brownian motion to check the applicability of this approach to simulated and real data sets. By comparing the probability of deviations for different data sets, we demonstrate how the theoretical bound for Brownian motion reveals additional information about observed stochastic processes. We apply the large-deviation method to data sets of tracer beads tracked in aqueous solution, tracer beads measured in mucin hydrogels, and of geographic surface temperature anomalies. Our analysis shows how the large-deviation properties can be efficiently used as a simple yet effective routine test to reject the Brownian motion hypothesis and unveil crucial information on statistical properties such as ergodicity breaking and short-time correlations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源