论文标题

具有恒定边缘分辨率的图形的网格图

Grid Drawings of Graphs with Constant Edge-Vertex Resolution

论文作者

Bekos, Michael A., Gronemann, Martin, Montecchiani, Fabrizio, Pálvölgyi, Dömötör, Symvonis, Antonios, Theocharous, Leonidas

论文摘要

我们研究了计算图的算法问题,其中$(i)$每个顶点是一个带有固定半径$ρ$,$(ii)$的磁盘,每个边缘是一个直线段,连接了代表其最终端口的两个磁盘的中心,代表其最终的$(iii)$ no twisks Intersect and(IV)的距离,并将其与diss Inders n nofe discement and(IV)隔开。 \ emph {edge-vertex分辨率},至少为$ρ$。我们称此类图纸\ emph {disk-link图纸}。 在本文中,我们关注恒定边缘vertex分辨率的情况,即$ρ= \ frac {1} {2} $(即单位直径的磁盘)。我们证明,在任何此类磁盘 - 链接图中,都需要二次区域,在线性区域中毫无用处地录入了直线图。在正面,我们提出了建设性的技术,这些技术可在几个(平面和非平面)图类别的磁盘 - 链接图的面积需求(包括有限的带宽,完整和平面图)中产生上限。特别是,完整和平面图的呈范围渐近地紧密。

We study the algorithmic problem of computing drawings of graphs in which $(i)$ each vertex is a disk with fixed radius $ρ$, $(ii)$ each edge is a straight-line segment connecting the centers of the two disks representing its end-vertices, $(iii)$ no two disks intersect, and $(iv)$ the distance between an edge segment and the center of a non-incident disk, called \emph{edge-vertex resolution}, is at least $ρ$. We call such drawings \emph{disk-link drawings}. In this paper we focus on the case of constant edge-vertex resolution, namely $ρ=\frac{1}{2}$ (i.e., disks of unit diameter). We prove that star graphs, which trivially admit straight-line drawings in linear area, require quadratic area in any such disk-link drawing. On the positive side, we present constructive techniques that yield improved upper bounds for the area requirements of disk-link drawings for several (planar and nonplanar) graph classes, including bounded bandwidth, complete, and planar graphs. In particular, the presented bounds for complete and planar graphs are asymptotically tight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源