论文标题
Othr多白素跟踪具有电离层参数的GMRF模型
OTHR multitarget tracking with a GMRF model of ionospheric parameters
论文作者
论文摘要
电离层是通过高雷达(OTHR)传播的无线电波的传播介质。离电层参数(通常是虚拟电离层高度(VIHS))需要对Othr Multitarget跟踪和本地化进行坐标注册。电离层参数的不准确性对OTHR的目标定位具有显着的有害作用。因此,为了提高OTHR的定位准确性,开发电离层参数的准确模型和估计方法和相应的目标跟踪算法很重要。在本文中,我们考虑了电离层与位置的变化以及OTHR目标跟踪中电离层的空间相关性。我们使用高斯马尔可夫随机场(GMRF)对VIH进行建模,从而为OTHR目标跟踪提供了更准确的VIHS表示。基于VIHS的期望条件最大化和GMRF建模,我们提出了一种称为ECM-GMRF的新型关节优化解决方案,以同时执行目标状态估计,多径数据关联和VIHS估计。在ECM-GMRF中,利用Ionosondes和Othr的测量值以估算VIH,从而更好地估计VIHS,从而提高了数据关联和目标状态估计的准确性,反之亦然。模拟表示所提出的算法的有效性。
The ionosphere is the propagation medium for radio waves transmitted by an over-the-horizon radar (OTHR). Ionospheric parameters, typically, virtual ionospheric heights (VIHs), are required to perform coordinate registration for OTHR multitarget tracking and localization. The inaccuracy of ionospheric parameters has a significant deleterious effect on the target localization of OTHR. Therefore, to improve the localization accuracy of OTHR, it is important to develop accurate models and estimation methods of ionospheric parameters and the corresponding target tracking algorithms. In this paper, we consider the variation of the ionosphere with location and the spatial correlation of the ionosphere in OTHR target tracking. We use a Gaussian Markov random field (GMRF) to model the VIHs, providing a more accurate representation of the VIHs for OTHR target tracking. Based on expectation-conditional maximization and GMRF modeling of the VIHs, we propose a novel joint optimization solution, called ECM-GMRF, to perform target state estimation, multipath data association and VIHs estimation simultaneously. In ECM-GMRF, the measurements from both ionosondes and OTHR are exploited to estimate the VIHs, leading to a better estimation of the VIHs which improves the accuracy of data association and target state estimation, and vice versa. The simulation indicates the effectiveness of the proposed algorithm.