论文标题
半流选择通用可压缩粘性流体的模型
Semiflow selection to models of general compressible viscous fluids
论文作者
论文摘要
我们证明了一个半流选择的存在,范围是càglàd的空间,即左 - 连续和具有右手限制功能在$ [0,\ infty)$上定义的功能,并在希尔伯特空间中取值。之后,我们将此抽象的结果应用于由可压缩粘性流体产生的系统,该系统具有$ a \ varrho^γ$,$γ\ geq 1 $的压缩压力,其粘性应力张量是对称速度梯度的非线性功能。
We prove the existence of a semiflow selection with range the space of càglàd, i.e. left--continuous and having right--hand limits functions defined on $[0,\infty)$ and taking values in a Hilbert space. Afterwards, we apply this abstract result to the system arising from a compressible viscous fluid with a barotropic pressure of the type $a\varrho^γ$, $γ\geq 1$, with a viscous stress tensor being a nonlinear function of the symmetric velocity gradient.