论文标题

基于光 - 基于杂种 - 基于轨道的第一原理方法:极化统计的影响

Light-matter hybrid-orbital-based first-principles methods: the influence of the polariton statistics

论文作者

Buchholz, Florian, Theophilou, Iris, Giesbertz, Klaas J. H., Ruggenthaler, Michael, Rubio, Angel

论文摘要

对强度物质相互作用的详细理解需要第一原则方法,可以有效地解决非相关量子电动力学的基本Pauli-Fierz Hamiltonian。将良好的电子结构方法扩展到这种情况的一种可能方法是将Pauli-Fierz Hamiltonian嵌入更高维的轻型杂种辅助配置空间中。在这项工作中,我们表明了北极子产生的混合费米 - 面部统计量的重要性,这是``光子穿衣'''Pauli-fierz Hamiltonian在腔中的新的基本粒子。我们表明,违反这些统计数据可能会导致非物理结果。我们提出了一种有效的方法,可以通过在穿着的一身降低密度矩阵上执行可表示条件来确保基础波函数的适当对称性。我们进一步提出了一般的处方,如何将给定的第一原理方法扩展到极化子,例如引入Polaritonic Hartree-Fock理论。北极星hartree-fock是北极星空间中的单引血方法,是电子空间中的一种多引用方法,即它描述了电子相关性。我们还讨论了对极化Qedft的可能应用。我们将该理论应用于晶格模型,发现粒子的结合态波函数越多,它对光子的反应越强。主要原因是,在小能量范围内,许多具有不同电子构型的状态可供选择,而不是强绑定(因此是能量分离的)地面波函数。这表明在某些条件下,耦合到腔的量子真空的耦合确实可以改变基态性质。

A detailed understanding of strong matter-photon interactions requires first-principle methods that can solve the fundamental Pauli-Fierz Hamiltonian of non-relativistic quantum electrodynamics efficiently. A possible way to extend well-established electronic-structure methods to this situation is to embed the Pauli-Fierz Hamiltonian in a higher-dimensional light-matter hybrid auxiliary configuration space. In this work we show the importance of the resulting hybrid Fermi-Bose statistics of the polaritons, which are the new fundamental particles of the ``photon-dressed'' Pauli-Fierz Hamiltonian for systems in cavities. We show that violations of these statistics can lead to unphysical results. We present an efficient way to ensure the proper symmetry of the underlying wave functions by enforcing representability conditions on the dressed one-body reduced density matrix. We further present a general prescription how to extend a given first-principles approach to polaritons and as an example introduce polaritonic Hartree-Fock theory. While being a single-reference method in polariton space, polaritonic Hartree-Fock is a multi-reference method in the electronic space, i.e. it describes electronic correlations. We also discuss possible applications to polaritonic QEDFT. We apply this theory to a lattice model and find that the more delocalized the bound-state wave function of the particles is, the stronger it reacts to photons. The main reason is that within a small energy range many states with different electronic configurations are available as opposed to a strongly bound (and hence energetically separated) ground-state wave function. This indicates that under certain conditions coupling to the quantum vacuum of a cavity can indeed modify ground state properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源