论文标题

NTIRE 2020挑战现实世界图像超分辨率:方法和结果

NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results

论文作者

Lugmayr, Andreas, Danelljan, Martin, Timofte, Radu, Ahn, Namhyuk, Bai, Dongwoon, Cai, Jie, Cao, Yun, Chen, Junyang, Cheng, Kaihua, Chun, SeYoung, Deng, Wei, El-Khamy, Mostafa, Ho, Chiu Man, Ji, Xiaozhong, Kheradmand, Amin, Kim, Gwantae, Ko, Hanseok, Lee, Kanghyu, Lee, Jungwon, Li, Hao, Liu, Ziluan, Liu, Zhi-Song, Liu, Shuai, Lu, Yunhua, Meng, Zibo, Michelini, Pablo Navarrete, Micheloni, Christian, Prajapati, Kalpesh, Ren, Haoyu, Seo, Yong Hyeok, Siu, Wan-Chi, Sohn, Kyung-Ah, Tai, Ying, Umer, Rao Muhammad, Wang, Shuangquan, Wang, Huibing, Wu, Timothy Haoning, Wu, Haoning, Yang, Biao, Yang, Fuzhi, Yoo, Jaejun, Zhao, Tongtong, Zhou, Yuanbo, Zhuo, Haijie, Zong, Ziyao, Zou, Xueyi

论文摘要

本文回顾了NTIRE 2020年对现实世界超级分辨率的挑战。它着重于参与方法和最终结果。挑战旨在解决现实世界的环境,其中不可用的真实高和低分辨率图像。因此,仅提供一组源输入图像以及一组未配对的高质量目标图像。在轨道1:图像处理工件中,目的是用合成生成的图像处理工件的超级溶解图像。这允许对方法进行定量基准测试\ wrt构图。在轨道2:智能手机图像中,必须超级分辨出真正的低质量智能手机图像。在这两个曲目中,最终目标是实现使用人类研究评估的最佳感知质量。这是AIM 2019之后的第二个挑战,其目标是推进超级分辨率的最先进。为了衡量性能,我们使用AIM 2019的基准协议。总共22个团队在最终测试阶段竞争,证明了解决问题的新和创新解决方案。

This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided along with a set of unpaired high-quality target images. In Track 1: Image Processing artifacts, the aim is to super-resolve images with synthetically generated image processing artifacts. This allows for quantitative benchmarking of the approaches \wrt a ground-truth image. In Track 2: Smartphone Images, real low-quality smart phone images have to be super-resolved. In both tracks, the ultimate goal is to achieve the best perceptual quality, evaluated using a human study. This is the second challenge on the subject, following AIM 2019, targeting to advance the state-of-the-art in super-resolution. To measure the performance we use the benchmark protocol from AIM 2019. In total 22 teams competed in the final testing phase, demonstrating new and innovative solutions to the problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源