论文标题
NTIRE 2020挑战现实世界图像超分辨率:方法和结果
NTIRE 2020 Challenge on Real-World Image Super-Resolution: Methods and Results
论文作者
论文摘要
本文回顾了NTIRE 2020年对现实世界超级分辨率的挑战。它着重于参与方法和最终结果。挑战旨在解决现实世界的环境,其中不可用的真实高和低分辨率图像。因此,仅提供一组源输入图像以及一组未配对的高质量目标图像。在轨道1:图像处理工件中,目的是用合成生成的图像处理工件的超级溶解图像。这允许对方法进行定量基准测试\ wrt构图。在轨道2:智能手机图像中,必须超级分辨出真正的低质量智能手机图像。在这两个曲目中,最终目标是实现使用人类研究评估的最佳感知质量。这是AIM 2019之后的第二个挑战,其目标是推进超级分辨率的最先进。为了衡量性能,我们使用AIM 2019的基准协议。总共22个团队在最终测试阶段竞争,证明了解决问题的新和创新解决方案。
This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided along with a set of unpaired high-quality target images. In Track 1: Image Processing artifacts, the aim is to super-resolve images with synthetically generated image processing artifacts. This allows for quantitative benchmarking of the approaches \wrt a ground-truth image. In Track 2: Smartphone Images, real low-quality smart phone images have to be super-resolved. In both tracks, the ultimate goal is to achieve the best perceptual quality, evaluated using a human study. This is the second challenge on the subject, following AIM 2019, targeting to advance the state-of-the-art in super-resolution. To measure the performance we use the benchmark protocol from AIM 2019. In total 22 teams competed in the final testing phase, demonstrating new and innovative solutions to the problem.