论文标题
JT超级重力,最小字符串和矩阵模型
JT Supergravity, Minimal Strings, and Matrix Models
论文作者
论文摘要
有人提出,最近与斯坦福大学和维滕(Stanford)和维滕(Witten)有关的矩阵模型进行了讨论,可以为拓扑扩展及以后的所有订单提供一个完整的定义。该结构定义了明确且稳定的超重力的非扰动物理。最小模型来自双尺度的复杂矩阵模型,对应于Altland-Zirnbauer $(\BoldSymbolα,\BoldSymbolβ)$(2γ{+} 1,2)$的情况,\BoldSymbolβ)$分类随机矩阵组合,其中$γ$是一个参数。非线性“字符串方程式”扮演着中心角色,该方程自然结合了$γ$,通常是整数,例如在最小模型中计算D-Branes。在这里,Half-Integer $γ$也有解释。实际上,$γ{=} {\ pm} \ frac12 $产生的情况$(0,2)$和$(2,2)$,这些$(2,2)$由斯坦福和维滕显示为具有非常特殊的属性。这些特征在此定义中表现出来,因为字符串方程的相关解决方案具有$γ{=} {\ pm} \ frac12 $的特殊属性。其他半级$γ$的其他特殊功能在超级型号中提出了新的惊喜。
It is proposed that a family of Jackiw-Teitelboim supergravites, recently discussed in connection with matrix models by Stanford and Witten, can be given a complete definition, to all orders in the topological expansion and beyond, in terms of a specific combination of minimal string theories. This construction defines non-perturbative physics for the supergravity that is well-defined and stable. The minimal models come from double-scaled complex matrix models and correspond to the cases $(2Γ{+}1,2)$ in the Altland-Zirnbauer $(\boldsymbolα,\boldsymbolβ)$ classification of random matrix ensembles, where $Γ$ is a parameter. A central role is played by a non-linear `string equation' that naturally incorporates $Γ$, usually taken to be an integer, counting e.g., D-branes in the minimal models. Here, half-integer $Γ$ also has an interpretation. In fact, $Γ{=}{\pm}\frac12$ yields the cases $(0,2)$ and $(2,2)$ that were shown by Stanford and Witten to have very special properties. These features are manifest in this definition because the relevant solutions of the string equation have special properties for $Γ{=}{\pm}\frac12$. Additional special features for other half-integer $Γ$ suggest new surprises in the supergravity models.