论文标题
通过应用程序容器进行工业控制:维持IaaS的确定性
Industrial Control via Application Containers:Maintaining determinism in IAAS
论文作者
论文摘要
行业4.0正在从根本上改变数据收集,其在工业流程中的存储和分析,从而实现了新颖的应用,例如灵活的高度定制产品的制造。但是,对这些过程的实时控制尚未意识到其使用收集的数据推动进一步发展的全部潜力。实际上,典型的工业控制系统是针对他们需要控制的植物量身定制的,使重复使用和适应成为挑战。过去,解决植物特定问题的需求掩盖了将控制系统与植物物理隔离的好处。我们认为,现代的虚拟化技术,特别是应用程序容器,为从植物中控制控制的独特机会提供了独特的机会。这种分离使我们能够充分实现高度分布和可转移的工业过程的潜力,即使是由时间关键的子过程产生的实时限制。在本文中,我们探讨了将工业控制软件从专用硬件转移到裸机服务器或(边缘)云计算平台的挑战和机会。我们使用特定开发的编排工具展示了一个迁移体系结构,并显示容器化的应用程序可以在共享资源上运行,而不会损害给定时间限制内的计划执行。通过延迟和计算性能实验,我们探讨了三个系统设置的限制,并总结了经验教训。
Industry 4.0 is changing fundamentally data collection, its storage and analysis in industrial processes, enabling novel application such as flexible manufacturing of highly customized products. Real-time control of these processes, however, has not yet realized its full potential in using the collected data to drive further development. Indeed, typical industrial control systems are tailored to the plant they need to control, making reuse and adaptation a challenge. In the past, the need to solve plant specific problems overshadowed the benefits of physically isolating a control system from its plant. We believe that modern virtualization techniques, specifically application containers, present a unique opportunity to decouple control from plants. This separation permits us to fully realize the potential for highly distributed, and transferable industrial processes even with real-time constraints arising from time-critical sub-processes. In this paper, we explore the challenges and opportunities of shifting industrial control software from dedicated hardware to bare-metal servers or (edge) cloud computing platforms using off-the-shelf technology. We present a migration architecture and show, using a specifically developed orchestration tool, that containerized applications can run on shared resources without compromising scheduled execution within given time constraints. Through latency and computational performance experiments we explore limits of three system setups and summarize lessons learned.