论文标题
在Ag上PTCDA的示例上的有机/金属界面的势能表面的可重复性(111)
Reproducibility of Potential Energy Surfaces of Organic/Metal Interfaces on the Example of PTCDA on Ag(111)
论文作者
论文摘要
有机/金属界面上的分子吸附取决于一系列机制:共价键,电荷转移,Pauli copulsion和van der waals(VDW)相互作用塑造了势能表面(PES),这是理解有机/金属界面的关键。描述具有密度功能理论的这种接口需要仔细选择交换相关(XC)功能和VDW校正方案。为了探讨PE相对于方法的选择的可重复性,我们提出了共同局部,半本地和非本地XC功能的基准,并结合了各种VDW校正。我们使用AG(111)上的Perynetemetracyliclic Dianhydride(PTCDA)基准测试这些方法,这是最经常研究的有机/金属界面之一。对于每种方法,我们使用高斯过程回归算法确定PES,该算法仅需要大约50个DFT计算作为输入。这可以详细分析PESS的特征,例如Minima和Saddle点的位置和能量。比较XC功能和VDW校正不同组合的结果,使我们能够识别方法之间的趋势和差异。用于不同计算方法的PESS是定性一致的,但也显示出很大的定量差异。特别是,吸附几何形状的横向位置与实验非常吻合,而吸附高度,能量和障碍物则显示出更大的差异。
Molecular adsorption at organic/metal interfaces depends on a range of mechanisms: covalent bonds, charge transfer, Pauli repulsion and van der Waals (vdW) interactions shape the potential energy surface (PES), making it key to understanding organic/metal interfaces. Describing such interfaces with density functional theory requires carefully selecting the exchange correlation (XC) functional and vdW correction scheme. To explore the reproducibility of the PES with respect to the choice of method, we present a benchmark of common local, semi-local and non-local XC functionals in combination with various vdW corrections. We benchmark these methods using perylenetetracarboxylic dianhydride (PTCDA) on Ag(111), one of the most frequently studied organic/metal interfaces. For each method, we determine the PES using a Gaussian process regression algorithm, which requires only about 50 DFT calculations as input. This allows a detailed analysis of the PESs' features, such as the positions and energies of minima and saddle points. Comparing the results from different combinations of XC functionals and vdW corrections enables us to identify trends and differences between the approaches. PESs for different computation methods are in qualitative agreement, but also displaying significant quantitative differences. In particular, lateral positions of adsorption geometries agree well with experiment, while adsorption heights, energies and barriers show larger discrepancies.