论文标题
在西奈台球上的扁平表面上
On Sinai billiards on flat surfaces with non-flat horns
论文作者
论文摘要
我们表明,在带有角的平面台球桌上的某些台球流可以建模为悬挂式流向带指数的尾巴的年轻塔楼。由于悬架流的高度功能本身是多项式的,当角是类似托里切利的小号时,可以得出台球流的极限定律,如果以$(1,2)$选择了托里切利小号的参数,则可以稳定限制。
We show that certain billiard flows on planar billiard tables with horns can be modeled as suspension flows over Young towers with exponential tails. Because the height function of the suspension flow itself is polynomial when the horns are Torricelli-like trumpets, one can derive Limit Laws for the billiard flow, including Stable Limits if the parameter of the Torricelli trumpet is chosen in $(1,2)$.