论文标题

用于模拟COVID-19的动力学流行动力学的分数SEIQRDP模型

Fractional-order SEIQRDP model for simulating the dynamics of COVID-19 epidemic

论文作者

Bahloul, Mohamed, Chahid, Abderrazak, Laleg-Kirati, Taous Meriem

论文摘要

这种新型冠状病毒病(Covid-19)被称为爆发爆发的病毒,最初在中国大陆被识别,2019年12月下旬。19Covid-19与世界上许多国家接触,每日病例的数量继续迅速增加。为了模拟,跟踪和预测病毒扩散的趋势,已经开发了几种数学和统计模型。易感性验证的固定的恢复死亡效果(SEIQRDP)模型是提出的最有前途的动态系统之一,用于估计COVID-19的可传播性。在本研究中,我们提出了一个分数SEIQRDP模型来分析Covid-19-19。分数范围范式为大流行生长表征提供了灵活,适当且可靠的框架。实际上,分数订单运算符不是本地的,并且考虑了变量的内存。因此,它考虑了确认和收回病例生长的子扩散过程。提出了使用实际COVID-19数据验证模型的结果,并讨论了分析,理解和预测流行病的拟议模型的相关性。

The novel coronavirus disease (COVID-19) is known as the causative virus of outbreak pneumonia initially recognized in the mainland of China, late December 2019. COVID-19 reaches out to many countries in the world, and the number of daily cases continues to increase rapidly. In order to simulate, track, and forecast the trend of the virus spread, several mathematical and statistical models have been developed. Susceptible-Exposed-Infected-Quarantined-Recovered-Death-Insusceptible (SEIQRDP) model is one of the most promising dynamic systems that has been proposed for estimating the transmissibility of the COVID-19. In the present study, we propose a Fractional-order SEIQRDP model to analyze the COVID-19 epidemic. The Fractional-order paradigm offers a flexible, appropriate, and reliable framework for pandemic growth characterization. In fact, fractional-order operator is not local and consider the memory of the variables. Hence, it takes into account the sub-diffusion process of confirmed and recovered cases growth. The results of the validation of the model using real COVID-19 data are presented, and the pertinence of the proposed model to analyze, understand, and predict the epidemic is discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源