论文标题

变形$σ$ -MODEL,RICCI FLOW和TODA FIELD理论

Deformed $σ$-models, Ricci flow and Toda field theories

论文作者

Bykov, Dmitri, Lust, Dieter

论文摘要

结果表明,带有感谢您的二维目标空间的$σ$模型的Pohlmeyer地图自然会导致“香肠”度量标准。然后,我们详细阐述了$ \ mathrm {cp}^{n-1} $ - 模型的三角变形,证明其$ t $ - 二键是kähler并求解了RICCI流程方程。最后,我们讨论了标志歧管$σ$ - 模型与TODA字段理论之间的关系。

It is shown that the Pohlmeyer map of a $σ$-model with a toric two-dimensional target space naturally leads to the `sausage' metric. We then elaborate the trigonometric deformation of the $\mathrm{CP}^{n-1}$-model, proving that its $T$-dual metric is Kähler and solves the Ricci flow equation. Finally, we discuss a relation between flag manifold $σ$-models and Toda field theories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源