论文标题
在融合到可压缩粘性流体的流量的平衡时/流量边界条件下
On convergence to equilibria of flows of compressible viscous fluids under in/out-flux boundary conditions
论文作者
论文摘要
我们考虑了正压系统 - 斯托克斯系统,描述了在有限制的域中可压缩的牛顿流体在内外通量边界条件下运动的运动。我们表明,如果边界速度与刚性运动的速度一致,则所有溶液在大时都会融合到平衡状态。
We consider the barotropic Navier--Stokes system describing the motion of a compressible Newtonian fluid in a bounded domain with in and out flux boundary conditions. We show that if the boundary velocity coincides with that of a rigid motion, all solutions converge to an equilibrium state for large times.