论文标题

三维声音柔软的轴对称对象的反向散射重建

Inverse scattering reconstruction of a three dimensional sound-soft axis-symmetric impenetrable object

论文作者

Borges, Carlos, Lai, Jun

论文摘要

在这项工作中,我们考虑了从多个频率下散射场的测量值重建三维不可穿透的轴对称障碍物的形状的问题。这个问题在定位和识别轴向对称性的障碍物(例如土地矿山)方面具有重要的应用。我们提出了一个分为两部分的框架,用于恢复障碍物的形状。在第1部分中,我们引入了一种算法,通过使用远场模式来找到障碍物的对称性轴。在第2部分中,我们通过将递归线性化算法(RLA)应用于散射场的多频测量来恢复障碍物的形状。在RLA中,通过增加单个频率测量值的一系列反向散射问题序列。这些问题中的每一个都是错误的和非线性的。通过使用带限的表示来处理障碍物的形状,而非线性是通过应用抑制的高斯 - 纽顿方法来处理的。使用RLA时,必须解决大量的正向散射问题。因此,拥有有效且准确的远期问题解决者至关重要。对于远期问题,我们将变量分离在方位角坐标中,傅立叶分解了结果问题,从而使我们有一系列脱钩的更简单的正向散射问题来解决。提出了反问题的数值示例,以在不同的情况下显示我们两部分框架的可行性,尤其是对于具有非平滑边界的对象。

In this work, we consider the problem of reconstructing the shape of a three dimensional impenetrable sound-soft axis-symmetric obstacle from measurements of the scattered field at multiple frequencies. This problem has important applications in locating and identifying obstacles with axial symmetry in general, such as, land mines. We present a two-part framework for recovering the shape of the obstacle. In part 1, we introduce an algorithm to find the axis of symmetry of the obstacle by making use of the far field pattern. In part 2, we recover the shape of the obstacle by applying the recursive linearization algorithm (RLA) with multifrequency measurements of the scattered field. In the RLA, a sequence of inverse scattering problems using increasing single frequency measurements are solved. Each of those problems is ill-posed and nonlinear. The ill-posedness is treated by using a band-limited representation for the shape of the obstacle, while the nonlinearity is dealt with by applying the damped Gauss-Newton method. When using the RLA, a large number of forward scattering problems must be solved. Hence, it is paramount to have an efficient and accurate forward problem solver. For the forward problem, we apply separation of variables in the azimuthal coordinate and Fourier decompose the resulting problem, leaving us with a sequence of decoupled simpler forward scattering problems to solve. Numerical examples for the inverse problem are presented to show the feasibility of our two-part framework in different scenarios, particularly for objects with non-smooth boundaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源