论文标题
恒星对不平衡化学和观察到的热木星气氛的影响
Stellar impact on disequilibrium chemistry and on observed spectra of hot Jupiter atmospheres
论文作者
论文摘要
在这项工作中,我们研究了不平衡过程对中性物种的混合比谱以及对旋转不同光谱类型的恒星的热木星外系列的模拟光谱的影响。我们还解决了恒星活动的影响,在所有恒星中都具有对流信封的所有恒星。我们使用瓦肯化学动力学代码来计算物种的密度。使用Helios代码计算大气的温度压力曲线。我们还利用了$τ$ -Rex的远期模型来预测主要和次要日食中行星的光谱。为了说明恒星活动,我们利用了从虚拟行星实验室(VPL)作为活跃的太阳状恒星的代理,使用了观察到的太阳XUV光谱。我们发现,在绕着A型星的行星中,大多数化学物种的混合比变化很大,这些恒星辐射出强XUV通量,从而诱导非常有效的光解离。对于某些物种而言,这些变化可以非常深入地渗透到行星气氛中,以达到约1 bar的压力。为了观察不平衡化学反应,我们喜欢温度= 1000 K的热木星和带有TEQ = 3000 $ K的超热木星,其大气中也具有温度反转。另一方面,不平衡计算预测中等温度的行星光谱的变化很小。我们还表明,与现代太阳之一相似的恒星活动驱动了大气物种混合比曲线的重要变化。但是,这些变化发生在非常高的大气高度,因此不会影响预测的光谱。我们估计,可以对绕附近明亮恒星的行星中的不平衡化学作用进行牢固检测和研究,并通过未来的任务具有光谱功能,例如,例如JWST和Ariel。
In this work we study the effect of disequilibrium processes on mixing ratio profiles of neutral species and on the simulated spectra of a hot Jupiter exoplanet that orbits stars of different spectral types. We also address the impact of stellar activity that should be present to a different degree in all stars with convective envelopes. We used the VULCAN chemical kinetic code to compute number densities of species. The temperature-pressure profile of the atmosphere was computed with the HELIOS code. We also utilized the $τ$-ReX forward model to predict the spectra of planets in primary and secondary eclipses. In order to account for the stellar activity we made use of the observed solar XUV spectrum taken from Virtual Planetary Laboratory (VPL) as a proxy for an active sun-like star. We find large changes in mixing ratios of most chemical species in planets orbiting A-type stars that radiate strong XUV flux inducing a very effective photodissociation. For some species, these changes can propagate very deep into the planetary atmosphere to pressures of around 1 bar. To observe disequilibrium chemistry we favor hot Jupiters with temperatures Teq=1000 K and ultra-hot Jupiters with Teq=3000$ K that also have temperature inversion in their atmospheres. On the other hand, disequilibrium calculations predict little changes in spectra of planets with intermediate temperatures. We also show that stellar activity similar to the one of the modern Sun drives important changes in mixing ratio profiles of atmospheric species. However, these changes take place at very high atmospheric altitudes and thus do not affect predicted spectra. We estimate that the effect of disequilibrium chemistry in planets orbiting nearby bright stars could be robustly detected and studied with future missions with spectroscopic capabilities in infrared such as, e.g., JWST and ARIEL.