论文标题

尖峰神经网络硬件实现和挑战:一项调查

Spiking Neural Networks Hardware Implementations and Challenges: a Survey

论文作者

Bouvier, Maxence, Valentian, Alexandre, Mesquida, Thomas, Rummens, François, Reyboz, Marina, Vianello, Elisa, Beigné, Edith

论文摘要

因此,神经形态计算是学术和工业参与者的主要研究领域。与冯·诺伊曼(Von Neumann)机器相反,脑为脑启发的处理器旨在使记忆和计算元素更加接近,以有效评估机器学习算法。最近,使用模仿神经元和突触操作原理的计算原始算法的一代认知算法的尖峰神经网络已成为深度学习的重要组成部分。他们有望提高神经网络的计算性能和效率,但最适合能够支持其时间动态的硬件。在这项调查中,我们介绍了尖峰神经网络的硬件实现的现状,以及从模型选择到训练机制的算法详细说明的当前趋势。现有解决方案的范围是广泛的;因此,我们逐一介绍一般框架和研究相关特殊性。我们描述了在硬件层面上利用这些事件驱动算法的特征并讨论其相关优势和挑战的策略。

Neuromorphic computing is henceforth a major research field for both academic and industrial actors. As opposed to Von Neumann machines, brain-inspired processors aim at bringing closer the memory and the computational elements to efficiently evaluate machine-learning algorithms. Recently, Spiking Neural Networks, a generation of cognitive algorithms employing computational primitives mimicking neuron and synapse operational principles, have become an important part of deep learning. They are expected to improve the computational performance and efficiency of neural networks, but are best suited for hardware able to support their temporal dynamics. In this survey, we present the state of the art of hardware implementations of spiking neural networks and the current trends in algorithm elaboration from model selection to training mechanisms. The scope of existing solutions is extensive; we thus present the general framework and study on a case-by-case basis the relevant particularities. We describe the strategies employed to leverage the characteristics of these event-driven algorithms at the hardware level and discuss their related advantages and challenges.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源